\begin{tabbing} $\forall$\=$E$,$X_{1}$,$X_{2}$:Type, ${\it info}$:($E$$\rightarrow$((:Id $\times$ $X_{1}$) + (:(:IdLnk $\times$ $E$) $\times$ $X_{2}$))), ${\it pred?}$:($E$$\rightarrow$(?$E$)),\+ \\[0ex]$p$:(\=$\forall$$e$:$E$, $l$:IdLnk.\+ \\[0ex]$\exists$\=${\it e'}$:$E$\+ \\[0ex]($\forall$${\it e''}$:$E$. \\[0ex]($\uparrow$rcv?(${\it e''}$)) \\[0ex]$\Rightarrow$ (sender(${\it e''}$) = $e$) \\[0ex]$\Rightarrow$ (link(${\it e''}$) = $l$) \\[0ex]$\Rightarrow$ (((${\it e''}$ = ${\it e'}$) $\vee$ ${\it e''}$ $<$ ${\it e'}$) $\wedge$ (loc(${\it e'}$) = destination($l$) $\in$ Id)))), \-\-\\[0ex]$r$:$E$. \-\\[0ex]SWellFounded(pred!($e$;${\it e'}$)) \\[0ex]$\Rightarrow$ ($\forall$$e$:$E$. ($\neg$($\uparrow$first($e$))) $\Rightarrow$ (loc(pred($e$)) = loc($e$) $\in$ Id)) \\[0ex]$\Rightarrow$ ($\forall$$e$,${\it e'}$:$E$. (loc($e$) = loc(${\it e'}$) $\in$ Id) $\Rightarrow$ (${\it pred?}$($e$) = ${\it pred?}$(${\it e'}$)) $\Rightarrow$ ($e$ = ${\it e'}$)) \\[0ex]$\Rightarrow$ ($\uparrow$rcv?($r$)) \\[0ex]$\Rightarrow$ \=($r$ \+ \\[0ex]rel\_star($E$; ($\lambda$$x$,$y$. ($\neg$($\uparrow$first($y$))) c$\wedge$ ($x$ = pred($y$) $\in$ $E$))) sends{-}bound(\=$p$;\+ \\[0ex]sender($r$); \\[0ex]link($r$))) \-\- \end{tabbing}